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Abstract Numerous methods are available for use as part
of a virtual screening strategy but, as yet, no single method
is able to guarantee both a level of confidence comparable
to experimental screening and a level of computing efficiency
that could drastically cut the costs of early phase drug
discovery campaigns. Here, we present VSM-G (virtual
screening manager for computational grids), a virtual screen-
ing platform that combines several structure-based drug
design tools. VSM-G aims to be as user-friendly as possible
while retaining enough flexibility to accommodate other in
silico techniques as they are developed. In order to illustrate
VSM-G concepts, we present a proof-of-concept study of a
fast geometrical matching method based on spherical har-

monics expansions surfaces. This technique is implemented in
VSM-G as the first module of a multiple-step sequence
tailored for high-throughput experiments. We show that, using
this protocol, notable enrichment of the input molecular
database can be achieved against a specific target, here the
liver-X nuclear receptor. The benefits, limitations and appli-
cability of the VSM-G approach are discussed. Possible
improvements of both the geometrical matching technique
and its implementation within VSM-G are suggested.
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Introduction

The search for new drugs is time-consuming and expensive
[1], thus any method that speeds up this process is
beneficial. Recently, the use of virtual screening (VS)
techniques [2] in many drug development strategies has
attracted much interest [3]. VS has two obvious advantages:
(1) the speed with which a large library of compounds can
be screened, and (2) the small initial capital investment
compared to the cost of an in vitro high-throughput
screening (HTS) program. The first aim of HTS and VS
is to reduce a molecular database to a few hit compounds
for a protein target. VS, combined or not with HTS, is
considered to have been successful when it leads to
confirmed hits at lower cost than with HTS alone. Research
in this area is particularly active and several success stories
have been reported [4–7]. Thus it is now widely accepted that
VS calculations can complement HTS experiments [8, 9].
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VS methods can have two distinct purposes, with one
being the exclusion of a large number of compounds with
little or no activity, leading to a limited set of molecules
that are more probable hits [10]. Such a method is referred
to as a “filter”. In the literature, database filtering against a
given target is often referred to as “enrichment” [11, 12].
A second purpose is to identify, by ranking input com-
pounds, a small number of candidates likely to be potent.
In all VS filters there is a trade-off between speed and
accuracy. Filters are optimised for speed; the fastest filters
can handle up to a few million molecules, but are no-
toriously imprecise in reducing this number to less than a
thousand while retaining all potential hits. More costly
techniques, which can be used in lead optimization
strategies, can tackle this problem [13, 14] but not with
several million molecules as input and sensible computa-
tion times [15]. Therefore, VS protocols are often based
on a single or a few fast filters, and are used prior to
experimental screening. However, in the latter case, VS
usage is limited to that of a pre-filter for HTS, reducing
the number of compounds to be tested experimentally, and
hence the cost of experiments, by at least one order of
magnitude [16, 17].

We have devised a platform for virtual screening called
VSM-G (virtual screening manager for computational
grids). Our objective with VSM-G is to provide a user-
friendly tool that will provide scientists with a large
range of in silico strategies for finding hits. Two kinds of
approaches can be employed here: ligand-based and
structure-based [18, 19]. At present, VSM-G uses struc-
ture-based methods to rank input compounds according to
their affinity for a target. Thus it can prioritise them for
experimental testing. Ligand-based modules, such as sub-
structure searches, can be involved as pre-processing steps to
screen molecular databases and reduce the number of
compounds requiring subsequent consideration. This initial
operation can precede the central element of the platform, the

screening funnel, a multi-step structure-based filtering process
that hierarchically combines several docking methods.

After describing the VSM-G platform, we will present a
proof-of-concept study in the filtering/enrichment context
using the liver-X-receptor β (LXRβ) as a target for a
screening calculation against a diverse ligand database. The
VSM-G screening funnel, consisting of a fast geometrical
matching filter preceding flexible docking, was used. This
approach is compared to using flexible docking alone for
VS. The benefits and limitations of geometrical matching as
part of the screening funnel approach, in terms of computing
efficiency, applicability and relevance, are discussed.

Overview of the VSM-G platform

Aims and scope of VSM-G

The first step of the pre-clinical drug discovery process can
be simplified as a work of exploration at the intersection of
distinct spaces [20]. The first of these is the proteome,
whose exploration in the drug design context involves its
restriction to the sub-space of proteins whose interactions
could be therapeutically significant as novel targets—the
target space. The second space starts from the even larger
ensemble of synthesizable small chemical structures. The
exploration here involves sorting out molecules with no, or
unwanted, biological effects, restraining the chemical space
[21] to the so-called “drug space” [22]. Eventually, merging
the target space with the drug space leads to a third ensemble
of receptor–ligand associations that have to be explored
successfully in order to solve the drug discovery problem.
Even if the ensembles of targets and candidate molecules
have been previously reduced efficiently to avoid a combi-
natorial explosion, this is still a long and arduous process.

VSM-G rationalises these searches by focusing on the
exploitation and management of current knowledge of the

Fig. 1 Basic VSM-G (virtual
screening manager for computa-
tional grids) workflow for hit
discovery
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proteome-to-target and chemical-to-drug steps. It also relies
on a specific protocol exploiting structure-based VS
methods regarding the final ligand-to-hit process. The
VSM-G workflow (summarised in Fig. 1) has been
designed to match the processes described above. The
basic organisation of the platform is therefore divided into
three distinct parts: two for the preparation of input data
(ligands and protein targets respectively), with the third part
being a multi-layer funnel for in silico screening.

Current status

The key features of VSM-G are as follows:

1. Wide coverage of the VS process, from ligand and
target preparation to the screening setup, monitoring of
calculation processes, and final analysis of the results.

2. Unified and user-friendly graphical interface (see
Fig. 2). Seamless integration of the modules, e.g.
intercommunication procedures, such as file format
conversions, are automatic and transparent to the user.

3. Easy code maintenance, with modular design and
choice of widely used programming languages (Java,
C, C++ and Fortran).

4. Access to grid technology to take advantage of distrib-
uted computing involving computer- and cluster-grids.

5. VSM-G relies on third-party software for performing
specific tasks, or in order to provide several choices of
techniques for a given purpose. Due to its modular
design, VSM-G is readily useable even if those external
programs are not installed on the host computer. One of
the main development goals of VSM-G is to provide at
least one free, open-source solution for each task, which
is not currently the case (e.g. at the moment GOLD is the
only choice for performing flexible docking).

Charts 1 and 2 list the VSM-G features regarding the ligand
database preparation and its target-related capabilities, respec-
tively. Current development is concentrated mostly on the
screening funnel.

Chart 1

Current VSM-G features: ligand database preparation.

Database creation and handling

- generation of virtual combinatorial libraries from chemical scaffolds and fragments

- merging of molecular files, with detection of duplicate structures

- support for different file formats, the most popular SDF [23] and MOL2 [24] as output

- conversion between formats using in-house code or OpenBabel [25]

- implementation of the MarvinBeans library [26] and VIDA [27] for database browsing (if available)

Substructure search

- flexible criteria through combinations of simple operators (and, or, not, have, at least, at most…)

- support for SMILES [28], SDF and RDF [23] as input

- internal use of a canonical topology coding that greatly reduces the complexity of the requests

- quickly searches through millions of compounds on desktop computers once the coding is performed

Toxicity prediction

- implementation of PCT [29], a carcinogenicity prediction program based on SAR

- exclusion of presumably toxic compounds

- possible enrichment of the database of substructures associated with poor chemical stability or toxicity

3D structure generation

- fragment-based 3D structure generation program

- the fragment database (> 10,000 structures) can be enhanced / extended by the user

- CORINA [30], which shares the same concept, can be used alternatively (if available)

- post-processing options: protonation (at pH = 7); conformational sampling using OMEGA [27] (if available)
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Chart 2

Current VSM-G features: target preparation.

The screening funnel: a multiple-step strategy

A wide variety of virtual screening programs are currently
available, and it is generally assumed that a well-chosen
combination of methods will give better results than any
single method alone. The interest in such multiple-step VS
protocols, often as a combination of a single structure-based

docking calculation with ligand-based approaches as pre-
filters, has been stressed in several papers [5, 41]. Post-
processing refinements starting from docking results have
also been reviewed [15, 42]. Alternatively, several methods
can be employed at different stages within a given docking
program [43]. The use of several docking programs in the
same protocol [44] is less frequent. Moreover, most

Handling of protein structures

- automatic checking and cleaning of input PDB files with respect to PDB standards [31]

- protein structures can be checked using the MOLPROBITY server [32]

- correction of protonation states: link to the H++ web server [33]

- relaxation of the hydrogen positions upon energy minimization

- link to the STING [34] web-based suite of programs for data mining

Receptor definition

- holoproteins: receptor assumed to be located at the center of mass of the ligand

- apoproteins: generation of an interactive protein 2D map with MSSH [35,36] and VMD [37] for picking up 

surface receptors

- manual definition of receptors can be imported from VMD selections, and exported to funnel modules

- handling of resident water molecules, potentially useful with some docking programs [38]

Multiple target conformations management

- handling of multiple X-ray structures

- enrichment through MD sampling [15,39], using VMD and NAMD [40]

- clustering, averaging and minimization of conformations from NMR data or MD sampling

Fig. 2 Screenshots of the VSM-G graphical interface
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programs require significant expertise in setting up and
analysing the results. More generally, each technique features
a specific balance between the speed of calculations and the
reliability of results [45]. Open software tools overcoming
such limitations are lacking. The virtual screening imple-
mentation in the VSM-G platform is constituted by a series
of different structure-based methods, organised sequentially
in a funnel strategy. The techniques range from simple
methods to more sophisticated ones, profiting from the speed
of the former and the accuracy of the latter. At each step of
the process, the filter discards inappropriate compounds. The
simplest and quickest filters are used at an early stage in the
filtering process, allowing the more time consuming pro-
cesses to be used at later stages. The multiple-step screening
funnel strategy is shown in Fig. 3.

Methodology

Outline of the proof-of-concept study

Most docking methods are not efficient enough for use in
high-throughput VS (i.e. the time required to process >106

molecules is out of reach with modern hardware). Fast
filtering prior to docking might be a workaround. Ligand-
based methods can also prove useful here, but unless large

training sets are available for the target, they are of limited
value. Geometrical matching procedures, which are orders
of magnitude faster than common docking methods, can be
employed in this particular context [46], and can lead to
discovery of hits [47], but few studies estimating their
impact in a general VS experiment exist.

The geometrical matching procedure evaluated here is a
two-step process. First, the MSSH program [35, 36]
approximates the geometry of molecular structures using a
series of spherical harmonics functions. This representation
is very compact as all information is contained in the
expansion coefficients, while the corresponding surfaces
still provide a good level of detail. Additionally, this
process can be performed once and for all for each protein
and ligand conformer. Afterwards, evaluating the surface
complementarity between a target active site and a ligand is
performed through simple and efficient operations [48]
specific to spherical harmonics algebra. This very fast
procedure is performed with the SHEF program [W. Cai et
al. manuscript in preparation], which identifies and scores
the geometrically optimal orientation of each ligand
conformation for the target. These techniques are described
in depth by Cai et al. [35, 36, W. Cai et al. manuscript in
preparation]

In this paper, we study a VSM-G-operated screening
funnel using MSSH/SHEF followed by flexible docking
using GOLD [49, 50]. Such an approach involves using
SHEF results to filter out part of the input ligand database
before proceeding to the second funnel step relying on
GOLD. In this proof-of-concept study we did no such
filtering; all molecules of the test set are evaluated with
both techniques in order to simulate the screening funnel
for all levels of filtering between the two steps.

Target preparation

The liver X receptors (LXRs) [51] represent attractive
targets for the development of new therapeutic agents for
treating multiple (especially cardiovascular) diseases [52].
Several structures of the ligand binding domain of LXR,
co-crystallised with various ligands, have been determined
by X-ray crystallography. Reports on structural analysis
reveal great plasticity of the ligand binding pocket, which is
able to accommodate ligands with noticeably different
shapes and sizes [53]. In this work, we study more
specifically the LXRβ isoform, for which we took as a
starting point different X-ray structures available from the
Protein DataBank (PDB) [54]: 1P8D [55], 1PQ6 [53] and
1PQ9 [53]. For each of these structures the most complete
chain was retained: chain A for 1P8D and chain B for 1PQ6
and 1PQ9. In all cases the binding area was complete and
the Cα trace superimposed well, allowing missing frag-
ments to be added using homology modeling. ProtonationFig. 3 Basic principle of the virtual screening funnel process
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was performed at pH 7 with VSM-G. The imidazole
tautomer of the active site histidine residue is the one at
Nδ1-H [56].

Figure 4 shows that the three binding site conformations,
represented by their MSSH-generated surfaces imported
into VMD [37], are clearly distinct geometrically. The
1PQ9 cavity is significantly smaller (810 Å3) than those of
1PQ6 (996 Å3) and 1P8D (1,014 Å3). 1PQ6 has a less-
spherical, more specific shape. Therefore, it could be
expected that (1) 1P8D is the least selective upon ligand
binding, (2) 1PQ6 shape specificity could be overcome by
ligand flexibility, and (3) the 1PQ9 conformation should
filter out more structures based on their size.

The protein–ligand binding modes depicted in the three
experimental structures have also been analysed. The
shared characteristics are dominated by hydrophobic inter-
actions with F271, F329 and F340. 1PQ6 allows for a possible
specific charge–charge interaction with R319. R319 already
makes an internal interaction with E281 in the 1P8D
conformation, dampening the strength of possible ligand
interaction. In the case of 1PQ9, neither of those residues is
accessible as the pocket size is restricted by a particular
F329 orientation.

Ligand database preparation

The starting database is composed of compounds commer-
cially available from three suppliers, ChemDiv [57],
Enamine [58] and Comgenex [59], in March 2006. Filtering
using Lipinski’s rule-of-five [60] was performed, allowing
a single violation for each structure, giving a total of
598,375 unique molecules. In order to reduce the database
size while retaining as much chemical diversity as possible,
we used ScreeningAssistant software [61]. This tool
characterises each molecule of the database using SSKey-
3D 54-bit fingerprints [62], allowing for similarity estima-
tion between pairs by computing Tanimoto coefficients
[63]. Database clustering can then govern the generation of
diversity-maximised subsets. In our case, we targeted a
10,000 molecule subset and obtained a database of 8,383
compounds.

A reference diverse database was defined by merging the
initial database of 598,375 molecules with the Chimiothèque
Nationale (CN) database [64, 65]. Diversity of each of the
three subsets (the 598,375 database, the 8,383 diversity set
and the 31,220 CN) was expressed as a fraction of the total
diversity [61] (Table 1). It appears that the 8,383 subset and

Fig. 4 Shapes of the 1P8D, 1PQ6 and 1PQ9 active sites (from left to right) as approximated by spherical harmonics expansion surfaces using
MSSH. The X-ray ligands filling the active sites are shown

Table 1 Diversity analysis of the reference database used in this paper, here referred to as the diversity subset of 8,383 compounds. In the table,
100% diversity is that of the union of the large-scale and the CN (Chimiothèque Nationale) databases. All values are computed by the
ScreeningAssistant software. Please refer to Monge et al. [61] for details of how drug-like and lead-like compounds are defined, and how
molecular database diversity is measured.

Database Number of
compounds

Drug-like
compounds

Lead-like
compounds

Drug-like
diversity

Lead-like
diversity

Global
diversity

Large-scale 598,327 563,777 (94.2%) 195,332 (32.6%) 84.3% 82.3% 81.8%
Diversity
subset

8,383 7,875 (93.9%) 3,178 (37.9%) 50.0% 43.5% 48.3%

CN 31,220 27,403 (87.8%) 20,295 (65%) 41.4% 44.8% 43.7%

Table 1 Diversity analysis of the reference database used in this
paper, here referred to as the diversity subset of 8,383 compounds. In
the table, 100% diversity is that of the union of the large-scale and the
CN (Chimiothèque Nationale) databases. All values are computed by

the ScreeningAssistant software. Please refer to Monge et al. [61] for
details of how drug-like and lead-like compounds are defined, and
how molecular database diversity is measured
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the larger CN database are of comparable diversity. The
former is therefore suitable as input data for a VS validation
experiment. Interestingly, from the large scale database to
the diversity subset, we traded only ∼40% of the diversity
for a 98.6% size reduction.

The 8,383-compound database was pre-processed into
VSM-G ligand preparation modules, which made it suitable
for subsequent docking programs. Molecules were first
converted into 3D, and their protonation state was then set
arbitrarily at pH=7. As MSSH/SHEF is a rigid shape-
matching procedure, a conformational search was per-
formed (retaining at most 400 conformers per compound),
giving 1,102,299 conformers.

Parameterisation of the virtual screening programs

A total of 1,102,299 conformers were docked using SHEF
in the three target conformations, giving 3,306,897 rigid
docking calculations. Using GOLD, 8,383 molecules were
docked, giving 25,149 flexible docking calculations. The
program parameters used, which favoured reliability over
speed, are listed in Chart 3.

Chart 3

Parameters for MSSH, SHEF and GOLD used for the
validation study simulating the use of MSSH/SHEF for
filtering prior to GOLD calculations.

Definition and relevance of reference data

The reference data for evaluating SHEF performance is
constituted by GOLD results and not by experimental data.
Like all docking programs, GOLD does not provide 100%
success in reproducing conformations and binding free
energies of protein–ligand complexes [66]. Hence the
reference set is approximate and cannot be used to measure

SHEF performance precisely. However, our aim here is
simply to demonstrate SHEF usefulness as part of the VSM-
G screening funnel, in a large-scale VS context. Conse-
quently, a chemically diverse reference set that is large
enough statistically seems appropriate despite GOLD-related
limitations.

In order to evaluate filtering, the reference molecular
database has to be divided in two subsets, the first
corresponding to the (presumably) most potent molecules
(referred to as the hit compounds subset) that will be
conserved upon filtering, and the second being considered as
inactive structures for the target. GOLD score values are used
to rank ligands against the three target conformations, and the
top 10% best-ranked ligands are selected from each of the
three sets. This cutoff value is set arbitrarily. Ranks are used to
select ligands instead of score values because molecular
dynamics simulations performed in our laboratory on LXRβ
indicate that important induced fit effects [67] could occur
upon ligand binding. This suggests that the GOLD scoring
function, which does not account for receptor internal
energy, may correlate only with the global free energy of
binding across a single receptor conformer [1].

As shown in Fig. 5, the three ensembles of 838 selected
structures overlap, giving a classification of hits into
different families regarding their selectivity for the three
target conformations. Out of a total of 1,414 molecules, 670
(47%) bind specifically to one of the three conformations,
356 (25%) bind to all three conformations, with the
remainder binding two out of three. The amount of
selective molecules for each conformation is 20%, 24%,
and 36% for 1P8D, 1PQ6 and 1PQ9, respectively, which is
in agreement with the structural specificities highlighted
previously.

Analysis of results

An in-house program was created for representing relation-
ships between the screening results of two different
techniques for the same set of input data. Figure 6 explains
the principles of the generated graphical representation.
Both rank ranges are divided in 20 5% blocks—a sensible
trade-off between graphical clarity and the amount of
information represented. Three particular cases are provided
as examples. Figure 6a depicts random selection, while

MSSH [35,36] / SHEF [48, W. Cai et al. manuscript
in preparation] 
- spherical harmonics expansion of order 10
- cavity coordinates defined using the ligand center of mass

GOLD [49,50] 
- default genetic algorithm parameters
- 50 dockings / molecule
- early termination option: docking stopped if the top 5
  conformations fall within 1.5 Å RMSD range
- cavity definition: flood fill (works well when the receptor is
  not open and extended)
- same cavity coordinates as with MSSH/SHEF
- scoring function: GoldScore

1 Redocking experiments of LXRβ reference ligands present in the X-
ray structures back up this hypothesis. Using GOLD, the 1PQ6 ligand
redocked in the 1PQ6 binding pocket conformation yields a
significantly higher score than the 1PQ9 ligand redocked in the
1PQ9 conformation. However, according to experimental data, the
1PQ9 ligand is indeed clearly more potent on LXRβ than the 1PQ6
ligand, further indicating that the protein–ligand interaction could not
be the dominant term in the free energy of binding
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Fig. 6c corresponds to a perfect correlation. The results of
any given filtering process will obviously lie between these
two. Figure 6b illustrates another ideal case for filtering, but
only for a precise filtering amount (which may or may not
be satisfactory).

The Spearman [68] ρ and Kendall [69] τ coefficients are
employed as measures of correlation:

ρ ¼ 1� 6
n n2�1ð Þ

Pn

i¼1
Δr2i

τ ¼ �1þ 4
n n�1ð Þ

Pn�1

i¼1

Pn

j¼iþ1
δ rj > ri
� �

where ri is the SHEF ranking of the i–ranked GOLD
structure; δri is the difference between these two ranks
(Δri=ri − i). δ is the boolean function: δ (true)=1 while δ
(false)=0. The rankings, in both cases, are in ascending
order from the best predicted binding molecule to the worst.
We also have 0 ≤ ρ ≤ 1 and −1 ≤ τ ≤ 1, with 0 indicating an
absence of correlation (random selection) and 1 a perfect
correlation (same rankings).

Other metrics are used in order to evaluate filtering
performance. Given a definition of what represents a hit
structure and what does not for a specific target, we can
describe the quality, q, of a molecular database of n
structures as the ratio between the number of hit com-
pounds and the total number of structures:

q ¼ nhits
n

The enrichment, e, of a database by a filtering process and
for a given filtering ratio f (0 ≤ f ≤ 1; f being the number of
filtered out candidates) can be defined as the ratio between
the quality of the reduced database and the quality of the
initial database:

e fð Þ ¼ q fð Þ
q 0ð Þ

Enrichment is commonly used to evaluate the efficiency
of the molecular database method. By definition, random
selection does not affect quality, so its efficiency is 1 for
any filtering amount. The maximum enrichment that can be

Fig. 5 Populations of hits defined from GOLD results of the 8,383-
compound diverse database. For each target conformation (1P8D,
1PQ6 and 1PQ9), the top-scoring 10% structures are defined as hits.
The overlap of these three sets is represented. A total of 1,414 hit
compounds were defined as the target subset that has to be conserved
through the filtering process

Fig. 6 Explanation of density plot representation of rank correlation, illustrating three particular cases: a random selection, b ideal filtering, c
perfect correlation
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obtained for a given filtering level is when all hits are
retained, which corresponds to:

emax fð Þ ¼ 1

1� f

The filtering efficiency, E, is eventually defined as the
relative distance of the filtering method from random
filtering (E=0) to maximum enrichment (E=1):

E fð Þ ¼ e fð Þ � 1

emax fð Þ � 1

Results

Influence of target conformation on GOLD and SHEF
results

The density plots shown in Fig. 7 give a picture of how
target conformation specificities influence GOLD and
SHEF results. The SHEF correlation between 1P8D
and 1PQ9 (Fig. 7b) is greater than those between 1PQ6
and both 1P8D (Fig. 7a) and 1PQ9 (Fig. 7c). This is in
agreement with the observation that the 1PQ6 shape is the
most specific. In the case of GOLD, it first appears that
1P8D and 1PQ6 results are highly correlated (Fig. 7d). The
correlations with 1PQ9 (Fig. 7e,f) are lower. A significant
number of structures performing well with both 1P8D and
1PQ6 are ranked low with 1PQ9, indicating a group of
ligands whose size fits well into the former active site
conformations but not into the smaller 1PQ9. Surprisingly,
such an expected group does not appear in SHEF results.

The results show that SHEF, which is a surface-based
method, appears more sensitive to active site shape
specificities than GOLD, which relies on a classical atom
coordinate-based representation of molecular structures.
However, in contrast to GOLD, SHEF appears unable to
assess size constraints correctly. This could be related not to
SHEF itself but rather to its current implementation within
the VSM-G screening funnel. Indeed, only the best
conformer score is retained for ranking each compound;
the diversity of geometrically acceptable conformations
(referred to as adaptability) is not taken into account. This
could lead to SHEF producing false positives with ligands
occupying almost all the active site volume. Such ligands
might require a minimal adaptability in order to provide a
good chance to satisfy chemical constraints upon binding,
in addition to geometrical complementarity.

Relationship between SHEF and GOLD classifications

Figure 7g–i depicts the relationships between SHEF and
GOLD ranks for 1P8D, 1PQ6 and 1PQ9. Given the

fundamental differences between these two programs, it is
not surprising to see lower correlation between SHEF and
GOLD than between the two different target conformations
for either SHEF or GOLD. We are, however, far from the
random case depicted in Fig. 6a, thus it is clear that noticeable
enrichment using SHEF is already observed at this point.

Although the general profile of the three density plots is
similar, they differ regarding the distribution of false
positives, i.e. populations located at the bottom right
corners, corresponding to molecules whose binding ranks
are overestimated by SHEF according to GOLD results. In
agreement with previous observations, it appears that SHEF
generates most false positives when docking on the 1PQ9
conformation, while correlation between GOLD and SHEF
is best in the 1PQ6 case, which presents a more specific
shape that should favour SHEF efficiency.

Interestingly, Fig. 7j shows that the correlation between
the SHEF and GOLD consensus rankings is higher than the
average of the GOLD–SHEF correlation for the three
receptor conformations. Additionally, such an approach
could be more interesting than the 1PQ6-only filtering of
Fig. 7h, which naturally favours ligands more specific to
1PQ6. Even if the corresponding correlation is higher, it is
probably more important to favour diversity regarding
target conformations if precise information concerning their
relative stability is unknown.

SHEF as a first-step enrichment filter in the screening
funnel protocol

It should first be noted that the ligands present in the 1P8D,
1PQ6 and 1PQ9 experimental structures, redocked using
GOLD, fall within the range of the hits subset as defined
above. These reference ligands are also amongst the top 2%
structures according to SHEF calculations. Therefore,
unless the filtering ratio is set too high, they would be
retrieved in a SHEF/GOLD screening funnel experiment.

Taking the SHEF consensus ranking as a reference, we
plotted the variation of the population of GOLD hits as a
function of the filtering ratio. The resulting curve is shown
in Fig. 8 together with the enrichment curves that would
result from random selection and from the ideal case where
the 1,414 hits are all ranked before the other 6,969
molecules. A clear enrichment is observed on all ranges
of filtering. There is still much room for improvement, but
present SHEF performance is interesting considering that
SHEF and GOLD are not in the same league in terms of
speed and precision. In the virtual screening context, if the
number of molecules to screen with GOLD using available
computing power is too high, SHEF could provide a
rational solution to decreasing the number of candidate
molecules without limiting too much the chances of finding
novel hit compounds for a given target.
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Correlation between SHEF efficiency and the nature
of the protein–ligand binding mode

We will now focus on results for two specific, arbitrarily
chosen, filtering ratios: 0.1 (low filtering, 90% of molecules
retained) and 0.5 (50% of molecules filtered out). In order
to determine whether particular families of molecules could
influence SHEF filtering efficiency, the variation of all hit
populations as defined in Fig. 5 for the four possible SHEF
rankings (on the 1P8D, 1PQ6, 1PQ9 targets, and multiple-
target consensus) was collected. The results are shown in
Table 2. This data was translated in terms of filtering
efficiency E(f) in Table 3. The main result can be
interpreted as follows: if we apply 10% and 50% filtering,

respectively, using the multiple-target SHEF filter, amongst
all hits we will retain 90.8% and 52.8%, respectively, of
what would have been lost using random selection.

The comparison between the four available filters based
on SHEF rankings suggests the use of multiple-target
consensus ranking as the best choice. This is in agreement
with observations made by analysing Fig. 7g–i. More
interestingly, analysis of SHEF efficiency of the different
hits sub-groups reveals that molecules specific to the 1PQ6
target conformation according to GOLD perform poorly
with SHEF (see Table 3, ”1PQ6-specific” line). It has been
shown that the specific 1PQ6 shape is taken into account by
SHEF, but 1PQ6 also presents a second peculiarity: the
accessibility of a charged residue. The corresponding

Fig. 7 Density plots between rankings. The first six plots depict the
relationships between the different target conformations, for SHEF (a,
b, c) and GOLD (d, e, f). Target conformation influence on these two
programs can therefore be observed. The last four plots show the

relationship between SHEF and GOLD results, for the three target
conformations (g, h, i), then using multiple-target rankings (j). The
scale is set so that the average (5%)2 block density is 8,383 / 400 ∼ 21.
Further explanation of these representations can be seen in Fig. 6
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1PQ6-specific ligands most probably share a binding mode
dominated by electrostatic effects that SHEF, which
compares only geometries, is unable to assess. In contrast,
molecules that are defined as hits for all three of the LXRβ
pocket conformations are those for which SHEF filtering is
the most efficient for both values of filtering (see Table 3,
row “1P8D+1PQ6+1PQ9”). These molecules might have a
high degree of adaptability, allowing SHEF to perform well
in identifying conformations with the best steric comple-
mentarity.

Discussion and concluding remarks

In this study, we wanted to present an overview of VSM-G,
and to more precisely evaluate the usefulness of the SHEF
geometrical matching procedure as part of the VSM-G
multiple-step high-throughput VS procedure. We used score
values from the flexible docking program GOLD as
reference data, allowing a qualitative assessment of
MSSH/SHEF efficiency as a first fast filter for the
multiple-step VSM-G procedure. Thus, even considering
the limitations of our validation test, the results are clear
enough to demonstrate that SHEF, and by extension its
association as the first module in the VSM-G screening
protocol, can indeed be useful for in silico drug discovery.

This paper has highlighted precisely the conditions
required to obtain good performance from MSSH/SHEF. It
appears that for flexible receptors prone to induced fit effects

upon complexation, a filtering based on a consensus ranking
of SHEF results for multiple target conformers should be
favoured. More importantly, basic information regarding the
types of interactions involved in ligand binding is crucial for
deciding if MSSH/SHEF should be used and if so to what
extent. Enrichment can be expected only when binding is not
largely dominated by chemical interactions such as electro-
static effects or hydrogen bonding. Active sites that are
known to favour hydrophobic interactions might be targets
of choice for a structure-based drug design strategy
involving MSSH/SHEF as part of a multiple-step VS
procedure set up using the VSM-G program.

Limitations of the spherical harmonics-based geometri-
cal matching procedure have been pointed out. As with all
structure-based in silico techniques, two fundamental
aspects govern how protein–ligand binding is modelled.
Firstly, the way in which search space is defined, and
secondly, how this space is explored. An improvement of
SHEF in the former aspect would involve taking into
account basic chemical properties to extend the comple-
mentarity score that is currently computed. Such an
approach has already been tried out in the ligand-based
drug design area [70]. Regarding the exploration strategy,
in its current implementation in VSM-G, SHEF acts as a
rigid docking program that selects only a single conformer
from the list of conformers for a given structure; this
approach has been shown here to produce significant
numbers of false positives in some cases. One alternative
could be to use a diverse set of docked conformers for each

Fig. 8 Enrichment curve of
SHEF as measured in the vali-
dation experiment, depending
on the degree of filtering ap-
plied. Reference results are the
GOLD rankings, which were
used to define a target subset of
1,414 structures (referred to as
hits) out of a starting number of
8,383. Multiple-target rankings
were used in both cases (i.e. the
rank of each molecule is the best
rank amongst the 1P8D, 1PQ6
and 1PQ9 classifications). The
two dotted curves represent ran-
dom selection and perfect cor-
relation (in which SHEF would
reproduce GOLD results per-
fectly); thus the filtering effi-
ciency (E) for a filtering ratio (f)
can be measured as the relative
position on the y-axis of the
SHEF enrichment curve be-
tween these two
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ligand, the selection between them being made by a second
module in the screening funnel protocol. Various techniques
are being considered in this regard [71–73].

In any case, it is uncertain that improvements of the
SHEF algorithm would necessarily be worthwhile. At the
present time the main advantage of the MSSH/SHEF
approach is its speed. With the safe parameters used in this
report, SHEF is typically 2–3 orders of magnitude faster at
processing >106 conformers than GOLD is for docking the
corresponding ∼104 structures. MSSH is still 1 order of
magnitude faster than GOLD, and its calculations can be
done once and for all for a given molecular database.
Enhancements of the MSSH and SHEF programs should

obviously not be made at the cost of the loss of this
computing speed advantage, which allows for large-scale
structure-based VS to be performed.

In future work, we will focus on selection rather than on
filtering capability. This will include a proof-of-concept
study of the usefulness of post-docking optimisations and
molecular dynamics calculations as funnel modules follow-
ing geometrical matching and flexible docking. Next, we
will illustrate the whole screening funnel strategy through
an actual large-scale hit discovery campaign using computer
grid architectures. The relevance of using advanced tech-
niques such as target sampling and grid computations in such
a context will also be highlighted.

Table 2 Evolution of the GOLD hits subsets population when applying
10% and 50% SHEF-based filtering. The groups defined in Fig. 6 are
studied separately, while for SHEF filtering, the results for each of the

three target conformations are presented as well as those using the
multiple-target consensus ranking. Note: the multiple-target / all hits
results (bottom right) can be measured directly on the curve in Fig. 8

Population of the different GOLD hit groups after SHEF filtering Initial population SHEF-based filters

1P8D 1PQ6 1PQ9 Multiple-target

10% 50% 10% 50% 10% 50% 10% 50%

GOLD-based hit groups 1P8D 838 834 672 835 702 827 652 832 688
1PQ6 838 828 620 833 664 817 591 826 644
1PQ9 838 832 632 837 707 835 660 838 687
1P8D-specific 166 165 130 165 125 164 117 165 130
1PQ6-specific 204 198 116 201 125 192 96 197 121
1PQ9-specific 300 295 194 299 222 297 212 300 213
1P8D+1PQ6 206 203 156 204 151 197 137 201 142
1P8D+1PQ9 110 110 90 110 97 110 90 110 93
1PQ6+1PQ9 72 71 52 72 59 72 50 72 58
1P8D+1PQ6+1PQ9 356 356 296 356 329 356 308 356 323
all hits 1414 1398 1034 1407 1108 1388 1010 1401 1080

Table 3 Values of the SHEF filtering efficiency E(f) for f = 10% and f = 50%. These values are directly correlated to those of Table 2

SHEF filtering efficiency (%) SHEF-based filters

1P8D 1PQ6 1PQ9 Multiple-target

10% 50% 10% 50% 10% 50% 10% 50%

GOLD-based hit groups 1P8D 95.2 60.4 96.4 67.5 86.9 55.6 92.8 64.2
1PQ6 88.1 48.0 94.0 58.5 74.9 41.1 85.7 53.7
1PQ9 92.8 50.8 98.8 68.7 96.4 57.5 100 64.0
1P8D-specific 94.0 56.6 94.0 50.6 88.0 41.0 94.0 56.6
1PQ6-specific 70.6 13.7 85.3 22.5 41.2 −5.9 65.7 18.6
1PQ9-specific 83.3 29.3 96.7 48.0 90.0 41.3 100 42.0
1P8D+1PQ6 85.4 51.5 90.3 46.6 56.3 33.0 75.7 37.9
1P8D+1PQ9 100 63.6 100 76.4 100 63.4 100 69.1
1PQ6+1PQ9 86.1 44.4 100 63.9 100 38.9 100 61.1
1P8D+1PQ6+1PQ9 100 66.3 100 84.8 100 73.0 100 81.5
all hits 88.7 46.3 95.0 56.7 81.6 42.9 90.8 52.8
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